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Irreversible adsorption of diffusing hard disks: An effective medium approach
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We propose an effective medium theory to analyze the kinetics of nonsequential adsorption of colloidal
particles, including transport and blocking effects, valid at all values of surface coverage. The theory is applied
to the irreversible adsorption of diffusing hard disks obtaining a kinetic law, which is in excellent agreement
with nonsequential computer simulations at all densities of adsorbed parfBl&63-651X99)04407-4

PACS numbe(s): 68.45.Da, 82.70.Dd, 05.60k

[. INTRODUCTION This means that, near the interface, one has to consider the

transport in the presence of a possibly large number of ad-

The adsorption of colloidal particles from fluid suspen-sorbed particles. In order to take these factors into account
sions to solid surfaces leading to monolayer formation is @roperly, several approximate techniques have been pro-
complex phenomenon of great practical interest. For man osed recently. The kinetics can be described by an effective

colloidal particles, latexefsl, 2], for example, neither surface ransport equation, which includes the blocking effect though

diffusion nor desorption is observed in the time scale accesd mean-field(MF) approximation(7,8]; it has been shown

sible to experiments: the particles remain immobilized aftelIhat this approach is only valid when the surface coverage

adsorption, and the process can be considered irreversiblgpIoroaCheS the saturation val. On the other side, for not

Consequently, nonequilibrium configurations are generate&00 high coverages, an expansion .Of th? adsprptlon rate in
and, when the surface coverage attains a given valjsma powers of the coverage can be obtained, in which the term of

ming configuration is obtained, with no space available Onordern is determined from the solution of the transport prob-

the surface for the adsorption of new patrticles. lem in the presence af adsorbed _partlcle@]. .
The transport of small colloidal particles in the vicinity of Hoyveyer, none Qf thgse formalisms allows one to obtgm a
an adsorbing surface is strongly influenced by the interpla escription of the k|net|c§ at all coverage V"’!'“es’ even in the
between diffusion and the interaction with the adsorbates. | implest case of adsorpt!on on one-dimensional surface;. At
the absence of strong attractive forces, Brownian motion althe core of th_e probl_e m 1S th_e fa(_:t that one has_to take into
lows diffusing particles to explore large regions and to inter-account the interaction of difiusing particles with a Iarge
act with a possibly large number of adsorbed particles beforQumber of adsorbates. On the other hand, we note that in a

reaching the surface. Many-body effects are thus essenti Hmb(_er of situations in p_hysics i.n which one ha}s to deal with
for the description of the process complicated many-body interactions, self-consistent methods

An approach to this problem is based on the introductio ased on effective interactions have proven to be very useful.

of geometric models in which the transport of the particle hus, one can try to describe the deta_iled inte_ract_ion With a
towards the surface is decoupled from the interaction Witikarge number of adsorbates by a certain effective interaction

the adsorbates; this last one is assumed to lead to certaifl be determlne.di poste_r|or||n a self-consistent way. The
use of an effective medium approach has proven to be very

rules for the addition of new particles to the surface. The | S P

simplest of such models is the so-called random sequenti seful in a similar context, namely, the diffusion-controlled
: o igand binding to a spherical cell partially covered by recep-

adsorption(RSA) model [2,3]. In RSA, it is assumed that tors[10]. The kinetic law obtained within this approach has

diffusing particles explore uniformly the surface; at a given R )
rate (imposed by external conditionaew particles arrive at peen shqwn to be |r.1d|st|.ngU|shabIe from the results obtained
in Brownian dynamics simulations.

points randomly and uniformly distributed on the surface; if our aim in thi is t lore th f such
adsorption at these points is possible, the particles are ad- uraim in this paper IS to explore the accuracy of such an

sorbed, whereas if the chosen position is not available fopPProximation in nonsequential adsorption processes in

adsorption, the particles return to the bulk. RSA and othe}"’hiCh transport is dom"?ate?'_ by diffusiqn. TQ this end, in
Sec. Il we introduce a simplified model in which a suspen-

similar models are exactly soluble in the case of one: ion of hard disks adsorb irreversibly onto a line. In Sec. llI
dimensional surfaces, and computer simulations can be ea3- y : :

ily implemented in higher dimensions. Although RSA hast € kinet.ics of the model' i;; analyzed through a generaliz_ed
succeeded in explaining some experimental observatio %ar-parkmg process explicitly coupled to a detailed descrip-

[4-6], it is not intended to accurately describe the kinetics o lon O; the .b'“"k d:cffusu()jn bprocess. A.‘ISO' thﬁhva"d'ty of th? |
the process: its “kinetic law” reflects only the probability of procedure IS confirmed by comparison with nonsequentia

success for each adsorption attempt according to the givelraﬁmwn"'Jln dynamics simulations. Finally, in Sec. IV we re-

filling rules, and it is decoupled from the transport mecha-/'€W OUr man conclusions.

nisms present in the suspension. Il. DESCRIPTION OF THE MODEL
A more consistent approach should include the interaction '
with the partially covered surface at the same level than the We want to study a simple model that may allow us to

other mechanisms relevant to the transport of the particlesinderstand the coupled effect of bulk diffusion and surface
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saturation on the kinetics of monolayer formation. We con-uniform incoming flux of particlesg far from the adsorbing
sider a dilute suspension of disks of radRithat diffuse ina surface. Due to the linearity of Eq2) we can rewrite
fluid in the bidimensional regi0>0 with a constant diffu- CI(F;)ZN):JS\II(F;)-()N), Where\II(F;)ZN) is a particu|ar solu-
sion coefficientD. We are interested in situations in which tion of Eq. (2) with unit flux far from the adsorbing surface

c_oIIO|daI a(_jsorptlon is fully |rre\./erS|bIe,. so that the interac- and verifying the same boundary conditionscaef;)ZN) at
tion potential between the colloidal particles and a clean SUlhe surface

face can be replaced by a perfect sink placed very close to . .

the surfacg11]. Thus, we consider that when the center of a Let us define the average concentrat{gy)(z; ¢) as
particle arrives at=0, it is adsorbed irreversibly. The mac-
roscopic state of the adsorbing line is characterized by its (c)(z; Q)Ef Pn(Xp) € (T Xy ) A Xy (3)
coverage f=2Rp, wherep is the number of adsorbed par-

ticles per unit length. As explained in the Introduction, the

repulsive interaction between adsorbed and diffusing parwherepy(Xy) is the probability that th&l adsorbed particles
ticles leads to a decrease of the flux of particles when the,q in the configuratioVZN. Note that(c,) is a function ofz

coveraged increasedthe so-called blocking effectin our and ¢ only due to the homogeneity of the average. The av-
model we assume that the adsorbed patrticles interact as h gage (¥)(z;6) is defined analogously and it verifies

disks with free particles, so the interaction between free an ) (2,6)=35¥)(z;6) . Out of the boundary layerz(
adsorbed particles takes place in the regietzés 2R, which >1), ’<c|) must match the macroscopic concentratigy.
we will call the boundary layer from now on. We assume om Egs.(2) and (3) we have, forz=1:

that the thickness”~2R of this boundary layer is small ’
compared to the macroscopic length sdaleletermined by )
boundary and initial conditions imposed on the suspension. di(¥)(z;6) -0
In addition, we assume that the bulk concentration is diluted, dz S
so the interactions between diffusing particles in the bulk are

neglectled. Ou} of this boundgry Igyer, the'macroscale €O he solution of Eq(4) that verifies the condition of unit flux
centrationcy, (r,t) obeys the diffusion equation: is

z=1. 4

acy(r,t)

DV, (7,1 =0, 1) (V) (z,0)=z+k '(0), z=1 (5)

and the particles flux towards the adsorbing line entering thérhe integration constarkt(¢) is a function of¢ only which

. . ifies k~1(0)=0 and k,(6=6.)=0. Defining cg(t)
boundary layer isJg(x,t)=Ddcy,/dZ,—,g. Equation (1) \ie” T Lo © . B
does not include the details occurring at #escale, which .ZC’V'(Z__lf) the .contlnunx gf t\ge mflir-c()gscoglc;_ goncehntra-
cannot be distinguished within this spatial resolution. Thes(i'_On ‘_'"t z= ,r,eq“"%SfB(t)_— 3<_1>(Z_ 0). etining the
details will be taken into account by matching the macrosKinetic coefficientk ~*(¢)=1+k; “(¢) one obtains the fol-

cale concentration with an averaged microscale solution odowing boundary condition focy(r;t):
tained from a particle transport problem formulated atthe
scale inside the boundary layer region. 0
We are interested in the microscale concentrationear ar - Is(O=K(O)ce(v). (6)
the adsorbing line, which takes into account the local inho-
mogeneities and the interaction withh adsorbed particles

located atx;,X,, . .. Xxy=Xy. Near the adsorbing surface
after a short transient time of order-/2/D, the transport
process is stationary if the colloidal suspension is dilute
enough[9] (cgR?/'<1, wherecg is a characteristic concen-
tration near the boundary layefFrom now on, we will use

dimensionless units in which lengths are measured in units g, jyterface and the appropriate additional initial and bound-

. . . 2 _ _ .
2R, time in units Of_‘R /_D and G_QiN/A' A be|n'g the ary conditions in the bulk. The explicit calculation kf( 6)
length of the adsorbing line. Thus,(r;Xy) is a solution of  requires a complete solution of the microscale many-

Equation(6) is a generalized Langmuir kinetic equatif@l
' in which the kinetic coefficienK(6) reflects the effect of
reviously adsorbed particles on the diffusion process near
he interface. OncK(0) is known, the kinetics of the mono-
layer formation can be obtained by solving Ed) for the
0leacroscale concentration with the boundary condit@nat

the stationary diffusion problem: particles problem, which is not feasible. Instead we will de-
.. velop an effective medium approach. This approach is based
Ve (r;Xy)=0. (20  on the observation that, according to E§), from the mac-

roscale point of view, the interface acts as a semipermeable
By definition, ¢,(r;Xy) verifies the boundary condition of medium, which imposes a concentratiagn(6) at z=0.
zero radial flux at the surfaces of tié adsorbed particles This fact is analogous of that encounteredldif] in the study
(hard disk interactionand a perfect sink at the free gaps of adsorption of a spherical cell partially covered by recep-
between the adsorbed particles. The second boundary condors. It suggests that the influence of the adsorbates on dif-
tion is obtained by realizing that far from the adsorbing sur-fusing particles can be replaced by the interaction with an
face the particle flux has to match the macroscopic fluxeffective medium. In the following section, we will develop
which is homogeneous at thé scale. Thus, we impose a such an approach.
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tion of unit flux far fromz=0 and perfect sink at region II.

F,(r,h) gives the contribution toP ¢y, due to particles ad-
sorbed on the remaining portion of the line and verifies the
boundary condition of constant value 1 in region Il and zero

flux far from z=0. The functionslzl(F,h) and FZ(F,h) are
obtained in the Appendix and are given by E@&7) and
(A11).

FIG. 1. lllustration of particle adsorption onto a free gap of size Once\IfEM(F,h;H) is obtained, we need to describe the
h limited by two adsorbed particleshown in black A new par-  eyolution of the structure of the adsorbed layer. In the EM
ticle (in gray) has been adsorbed, creating two new gaps offsize approach, we are interested only in the distribution of free
andh’—h—1. At the same time, another partidialso shown in  gans of sizéh at coveraged. The adsorption of particles onto
gray) diffuses near this gap. Region II, at which the effective me-ype 4dsorbing line continuously destroys existing gaps and
dium approximation is employed, is denoted by EM. creates smaller new gaps. L@(h,t) be the number density
of gaps with lengthh at timet. The time evolution ofG(h,t)
due to gap creation and destruction is described by the bal-
ance equation:

lll. EFFECTIVE MEDIUM APPROACH

We start by obtaining an approximation¥o(r; Xy) mak-
ing use of the effective mediufEM) approach. In this ap-
proach, we replace the exact boundary cor_lditions of zerc?G(h't) =—q0(h;t)G(h,t)+2fw dh’q(h”,h:t)G(h",1),
radial flux at the surfaces of ti¢adsorbed particle@dsorb- ot h+1
ed at)?N) and perfect sink at the available space between the )
adsorbed particles by a simplified boundary condition. An o ]
important topological observation is that the line is dividedWhich is a generalization of that proposed[#?2,13. The
into a set of disjoint gaps between theadsorbed particles. functionq(h,h’;t) is the rate of destruction of gaps of size
All adsorption events must take place within any of thesedt timet, creating two new gaps of size—h’—1 andh’
gaps. Now, consider an adsorbing gap of sizeee Fig. 1, (seg Fig. L Destructlo'n of gaps is due to the adsprpuon of
which we will designate by region I. We will designate the Particles, sog(h,h’;t) is given by the rate of particles ad-
remaining of the line=0 by region II. The concentration at Sorbing at the poink=h"—(h—1)/2 atz=0, which is

a pointf of the bulk near region | is strongly influenced by

the interaction of the diffusing particles with the two ad- q(h,h’;t)zﬁ _ 9
sorbed particles limiting the gap. The influence of the re- J9z{,_,

maining adsorbed particles is taken into account by assuming

a uniform effective medium, that imposes a concentratiorin the EM approachg,=JsW gy near the gap, and E¢9)
k[l(a) at region Il. Within this approximation¥g,, is a can be written as

function of r, the size of the gaph and the coverage .
through the effective medium concentratiok, *(6). q(h,h";)=3s(t)[qM(h,h") +kH(6(1)qd@(h,h")],

\PEM(F,h; 0) is a particular solution of the stationary diffu- (10
sion equation(2) that verifies the boundary conditions of
uniform unit flux far from the adsorbing surface, perfect sink
at region |, and zero radial flux at the surfaces of the two JE.
adsorbed patrticles limiting the gap. At region Il, the effective q(h,h") -
medium approach assumes tﬂq;M(F,h; 0) has the uniform 92

value k; *(6). Thus, the concentration a=0 is ¢,=0 at ) o ) )
region | andc,zJSkr’lz(l—K)cBEcEM at region II. This for j=1,2. The explicit expressions obtained for the func-

tions q)(h,h’) are given by Eqs(A8) and (A12) in the
Appendix. The functiongg(h;t) is the total rate at which
gaps of lengtth are destroyed at timg and is given by

where

, (11
z=0

concentratiorcg), evolves withé from that of an adsorbing
empty linecgy(6=0)=0 to the bulk concentration at jam-
ming, Cem (0= 6) =Ca(6x).
We can take advantage of the linearity of Eg) by de- -
composing¥ gy, in the form: QO(th)=J dh’q(h,h’:t)
0

Veu(FO=Fur.n Tk OF 1), (D =3gO[a ) +k )], (12

where F4(r,h) and F,(r,h) are particular solutions of the Note that contrary to previous generalized car-parking ap-
diffusion equation(2). Both functions verify the boundary proacheq12,13, q, depends on time. This dependence is
conditions of perfect sink in region | and zero radial flux atdue to the contributions coming from the effective medium
the surfaces of the two adsorbed particles limiting the gapsurrounding the gap, which is in a state characterized by
F,(r,h) is the solution corresponding to the situation in 6(t). It is a consequence of the fact that stgelding prop-
which no more particles than these limiting the gap areerty, which allows one to exactly solve other one-
present on the line. It therefore verifies the boundary condidimensional models, is not satisfied here. The flux of par-
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K(©)

0.00

FIG. 2. Dimensionless adsorption ra¢€ ) as a function of the
coverage: self-consistent res(gblid line), density expansiofshort
dashed ling and RSA(dotted dashed line

ticles adsorbing at timed, defined in Eq.(6), must be
recovered as the averaged(h;t) over all gaps, which can
adsorb particles:

Ig(t)= fdhe(h,wqo(h;t). (13

Equation(13) gives a consistency condition for the EM cal-
culation. Note that(h,t) is a function oft only through its
dependence oA(t). Thus, one can eliminatein favor of 4
noting that the coverag® is a monotonically increasing
function oft. Using Egs.(10) and(12) in Eq. (8) we obtain
for G(h,6) :

h,
—awa 2 —asP(MG(h, )~k 1(0)qP () G(h,6)

+2F dh’[q®(h”,h)
h+1
+k;, 1()g®(h",h)]1G(h", 6). (14)

An equation fork,(6) is obtained using Eq12) in the con-
sistency relation(13):

| “ancin.oam
1

k. (0)= (15

1—fxth(h,0)q81)(h)
1

Now, the functionsG(h, ) andk,(#) are obtained solving
numerically the coupled equatiofis4) and(15). The desired
coefficientK . (6) =1+k; *(6) is shown in Fig. 2. The ef-

known approximate expressions valid at low or near satura-
tion coverages and with computer simulations.

In [9] an expansion of the exact kinetic coefficidffs)
in powers ofé for nonsequential adsorption models was ob-
tained. In the case of diffusing hard disks, the first two terms
of the expansion were evaluated giving the refait

K(8)=1—m60+3.1249°+ O(6°), (16)

which is accurate up to coverages of order0.25. Equation
(16) is also shown in Fig. 2 for comparison. As shown in this
figure, the EM results agree very well with E@.6) in the
range of validity of Eq.(16).

Near the jamming limit, the arguments proposed by
Schaafet al. [14] adapted to diffusing disks lead to the
power-law behavioK ~ (6..— 8)*2. The obtained behavior
of Kgw(6) near the jamming limit reproduces the known
power lawK ~ (6..— 8)%? so the effective medium solution
is consistent both with low- and near-jamming density
known results. FroniKgy(60) we obtain a jamming coverage
of 6.,=0.751 that agrees with the value previously obtained
by analyzing a sequential model, which includes diffusion
random sequential adsorptigDRSA) [13]. As in the three-
dimensional case, the jamming coverage is close to the
known RSA valug9,15]. In spite of this similarity between
diffusing disks and RSA-jamming configurations, the kinet-
ics of both processes are clearly different, as shown in Fig. 2.
This comparison shows that the blocking effect of adsorbed
particles is larger in our model than in RSA, especially at
low and intermediate coverages.

Now, we propose the following simple fitting formula to
the EM results:

. a;0+a,0°+az6°
(1—6/6,,)%

In order to exactly recover the low density expansion Eq.
(16) we fixed the values o, anda, to a;=7 anda,=
—0.4712. Also, we have,=3/2 in order to recover the
asymptotic behavior of the EM solution. Thus, the only free
parameter is3, which is obtained by a least-squares fitting,
obtainingaz= —0.8509. Using this valueK;;;(6) is indis-
tinguishable fromK gy (6) when plotted in Fig. 2.

In order to check the accuracy of the effective medium
result at all coverages, we compare it with computer simula-
tions of nonsequential adsorption of disks. We consider an
initial uniform concentrationcy in a vessel limited by an
adsorbing line of length., at z=0 and a reflecting line at
z=L,. Periodic boundary conditions are applied to the other
two walls. Initially, No=L,L,c, particles are placed ran-
domly inside the simulation box. The process is simulated by
using a Brownian dynamics algorithft6] in which all par-
ticles diffuse simultaneously in continuous two-dimensional
(2D) space. The collision between a diffusing particle and an
adsorbed one is modeled as an elastic colliglof] . We are
interested in simulations of diluted suspensions, so the inter-
actions between two or more particles in the bulk can be
neglected. We only consider the hard disk interaction be-

fective medium approach does not provide an estimation ofiwveen adsorbed particles and diffusing ones.
the error introduced by the approximations employed, so the In these simulations, the simultaneous adsorption of two
only way to check its accuracy is to compare its results withfree particles at very close positions, competing to occupy
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0028 — served time between adsorptions is not equal to the mean
time, which an individual particle needs to reach the adsorb-
ing line. In contrast, in a DRSA algorithfii 8] this compe-
tition is not included and the time between consecutive ad-
sorptions is equal to the time which a particle needs to reach
the adsorbing line. This time can become very large and, in
order to obtain feasible computational times, particles must
be rejected when arriving to a given height. In addition, the
obtained results depend strongly on the position of this re-
jection line, so the kinetics of the process is not well defined
0.0L0 — [18]
Y Let us note that in order to analyze the effect of synchro-
nous diffusion of several particles in adsorption kinetics, a
0.005 — different simulation model, based on cellular automaton
A (CA) was proposed if19]. CA models are interesting be-
cause they allow fast simulations, especially in parallel ma-
chines. However, the microscopic details of the CA model
are different from those of our Brownian dynamics simula-
tions. Unlike our simulations, in the CA model particles per-
_ _ _ _ . form a random walk on a square lattice. The radius of the
FIG. 3. Dimensionless particle fluk( ) starting from an initial particles is fixed to be 1/4 of the mesh size and the probabil-
particle.concentrationoz.0.0S.: simulatipns(crosse}sand solutior?. ity of jumping to the adjacent site can depend on the direc-
o;‘vt:ne;|m§-d(%§>jggl?gt“ggfu5|on equation with boundary Condltlontion of the jump. The results obtained in the simulations are
g y=a ' observed to depend on the fine microscopic aspects of the

the same free space on the line is highly improbable due t#/MP dynamics. For example, the jamming coverage is found
the low bulk concentration. In fact, this event was not ob-{0 depend on the diffusion coefficieDt, whereas in Brown-
served in our simulations. Of course, simultaneous adsorg@n dynamics the effect dd is to change the time scale.
tions at different pointdat the same or different gapsr
adsorptions separated by very small time intervals were very
often observed.

The dimensionless values of the parameters employed in A simplified (1+1)-dimensional adsorption model has
our simulation werel,=100, L,=21, andc,=0.05; the been analyzed in order to investigate the kinetics of nonse-
time step was\t=10"* and the simulation results were av- quential particles adsorption driven by diffusion. We have
eraged over 1000 simulation runs. analyzed, both theoretically and by nonsequential Brownian

The flux J4(6) obtained in these simulations is shown in simulations, the irreversible adsorption of diffusing hard
Fig. 3. On the other hand, we have solved numerically thelisks onto a line. The most interesting feature of this model
diffusion equation(1) with the boundary condition a=1 is that the usual hypothesis of sequential adsorption is not
given by Eq.(6) using the effective mediur{ (), a reflect-  valid and a more detailed description of the transport process
ing boundary condition ar=L, and the initial condition is required. Thus, this simple model allows us to investigate
cu(t=0)=c,. Note that in this situatior,, is a function of  the coupling between the diffusive transport from the bulk
z andt only. In Fig. 3 we compare the obtained flux( 6) and the blocking effect due to the adsorbed monolayer.
with that measured in our simulations, showing an excellent The theoretical analysis was performed by noting that any
agreement at all coverages except at very short times, befoeglsorption event must take place into a free gap limited by
the steady situation is reached in the boundary layer. At thiswo adsorbed particles. However, the diffusive transport to-
point, we remark that although the time evolution®fle-  wards the interface is influenced not only by the particles
pends on the specified boundary conditions, the jammindgimiting the gap, but also by the remaining part of the mono-
coveragef,, defined byK(#=46.,)=0 is independent of layer. To deal with this many-body effect, we have intro-
these. Our simulations give the valég=0.7506, which is duced an effective medium hypothesis: the remaining of the
consistent with the effective medium calculations. adsorbing line out of a given gap is assumed to be at an

This simultaneous diffusion of particles is the main dif- uniform concentratiorcgy(6) to be determined in a self-
ference between our simulations and the sequential simulasonsistent way. Once the diffusion equation near an adsorb-
tions of the DRSA[15]. In our algorithm, several particles ing gap surrounded by the effective medium is solved, the
can adsorb simultaneous(gr in a very small time interval adsorption rate is obtained by analyzing the dynamics of
at different points of the adsorbing surface. If one observegaps creation and destruction. This description leads to an
the motion of an individual diffusing particle, the mean time integrodifferential equation for the gap density coupled with
needed to reach the adsorbing surface by diffusion can bex self-consistent condition for the adsorption rate, which we
come arbitrarily largegleven whether the surface is free of have solved numerically.
adsorbed particlegsHowever, due to the simultaneous mo- The effective medium adsorption rate is in agreement
tion of all the particles, the observed time between adsorpboth with known approximate expressions valid at low- and
tions can be arbitrarily small. Due to the competition of thenear-saturation coverages as well as with nonsequential com-
diffusing particles to arrive at the adsorbing line, the ob-puter simulations. Thus, the effective medium approximation

1(6)

0.000

IV. CONCLUSIONS
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gives accurate results at all monolayer densities. We also IF

note that our results show an enhanced blocking effect as 5 = (A4)
compared with an RSA process. n=*a

The full analysis of a consistent approach to nonsequen- _ . - .
tial adsorption processes, which includes transport mechd-'St: We obtain the functior,(r,h). In addition to Egs.
nisms and interaction with the interface, is a very compli-"A2): (A3), and(A4), it also verifies the condition of perfect
cated problem because it requires us to take into accourfi™K in region I,
simultaneous interactions between a large number of par-
ticles. The main goal of this paper is to show explicitly, in a
simplified case, that the interaction with the adsorbed mono-
layer can be modeled as an effective medium, to be specified . _
self-consistentlya posteriori Such an approach can also be and unit flux towards the adsorbing surfacezate, Fy(z

useful for the study of more complex models, including other_’w’h)zz' Itis useful to rewrite this last condition in bipo-

transport processd&0,21. lar coordinates in the forr22]

F(r,h)|s=0=0, (A5)

o
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In this Appendix, we obtain explicitly the solutions

APPENDIX: SOLUTIONS OF THE DIFFUSION EQUATION
IN BIPOLAR COORDINATES

F.(r,h) andF,(r,h) of the diffusion equatior(2) required
in Sec. lll. To this end, we introduce bipolar coordinafes
7 centered at the center of regionX=0, z=0) defined by
[22]:

E+i
2

n

: (A1)

X+iz=isinha cot{

where the parametew is related to the gap sizé by
2 cosha=h+1. The curvespy=const are semicircles cen-
tered at x=sinhacothy, z=0 with radius r
= sinha/ sinh 7. The pointé=0,7=0 corresponds ta=x.
For »= = a we obtain two semicircles, which coincide with

the circumferences of the exclusion disks of unit radius de-

—Na

F,(r,h)=z+2 sinha Y, sinn¢ coshn .
n=1

sinhna
(A7)

Using Eq.(A7) in Eg. (11) we obtain the contribution df
to the rate of adsorbing particles:

o0

g®(h,h")=1-2(1+ coshn)n§=)l (—1)"

—Na

ne
sinhna

coshn .
(A8)

The functioan(F,h) is obtained in a similar way. In addi-

tion to Eqgs.(A3) and (A4), F,(r,h) verifies the boundary
conditions of constant value 1 at region Il

F2(F,h)|§:0: 1. (Ag)

limited by the adsorbed particles. In these coordinates, thﬁ also verifies the condition of no net flux of particles to-

diffusion equation now reads as

9%F;

| J°F
—+

j =

(A2)

Both functionsF,(r,h) andF ,(r,h) verify Eq.(A2) with the

boundary conditions of perfect sink at region | and zero ra-
dial flux at the excluded surfaces delimited by the two ad-
sorbed particles. In bipolar coordinates these conditions ar

given by

Fi(r.h)]e=,=0, (A3)

wards region Il. This condition is obtained by assuming at
z—o the same concentration as in region Il

Fo(r,0)|s=0p-0=1. (A10)

The solution of Eq.(A2) with boundary conditiongA3),
(A4), (A9), and (A10) is a function only of¢ and has the
simple form:

Fz(F,h)Zl—é. (A11)
a
Ssing Eq.(A1l) in Eqg. (11) we obtain the contribution df,

to the rate of adsorbing particles:

1+ coshy

(2) "y =
= (h.h") 7 sinha

(A12)
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