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Irreversible adsorption of diffusing hard disks: An effective medium approach

Jordi Faraudo and Javier Bafaluy
Departament de Fı´sica, Grup de Fisica Estadistica, Facultat de Ciencies Edifici Cc, Universitat Autonoma de Barcelona,
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We propose an effective medium theory to analyze the kinetics of nonsequential adsorption of colloidal
particles, including transport and blocking effects, valid at all values of surface coverage. The theory is applied
to the irreversible adsorption of diffusing hard disks obtaining a kinetic law, which is in excellent agreement
with nonsequential computer simulations at all densities of adsorbed particles.@S1063-651X~99!04407-4#

PACS number~s!: 68.45.Da, 82.70.Dd, 05.60.2k
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I. INTRODUCTION

The adsorption of colloidal particles from fluid suspe
sions to solid surfaces leading to monolayer formation i
complex phenomenon of great practical interest. For m
colloidal particles, latexes@1,2#, for example, neither surfac
diffusion nor desorption is observed in the time scale acc
sible to experiments: the particles remain immobilized a
adsorption, and the process can be considered irrevers
Consequently, nonequilibrium configurations are genera
and, when the surface coverage attains a given value, ajam-
ming configuration is obtained, with no space available
the surface for the adsorption of new particles.

The transport of small colloidal particles in the vicinity o
an adsorbing surface is strongly influenced by the interp
between diffusion and the interaction with the adsorbates
the absence of strong attractive forces, Brownian motion
lows diffusing particles to explore large regions and to int
act with a possibly large number of adsorbed particles be
reaching the surface. Many-body effects are thus esse
for the description of the process.

An approach to this problem is based on the introduct
of geometric models in which the transport of the partic
towards the surface is decoupled from the interaction w
the adsorbates; this last one is assumed to lead to ce
rules for the addition of new particles to the surface. T
simplest of such models is the so-called random seque
adsorption~RSA! model @2,3#. In RSA, it is assumed tha
diffusing particles explore uniformly the surface; at a giv
rate~imposed by external conditions! new particles arrive a
points randomly and uniformly distributed on the surface
adsorption at these points is possible, the particles are
sorbed, whereas if the chosen position is not available
adsorption, the particles return to the bulk. RSA and ot
similar models are exactly soluble in the case of o
dimensional surfaces, and computer simulations can be
ily implemented in higher dimensions. Although RSA h
succeeded in explaining some experimental observat
@4–6#, it is not intended to accurately describe the kinetics
the process: its ‘‘kinetic law’’ reflects only the probability o
success for each adsorption attempt according to the g
filling rules, and it is decoupled from the transport mech
nisms present in the suspension.

A more consistent approach should include the interac
with the partially covered surface at the same level than
other mechanisms relevant to the transport of the partic
PRE 601063-651X/99/60~1!/722~7!/$15.00
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This means that, near the interface, one has to conside
transport in the presence of a possibly large number of
sorbed particles. In order to take these factors into acco
properly, several approximate techniques have been
posed recently. The kinetics can be described by an effec
transport equation, which includes the blocking effect thou
a mean-field~MF! approximation@7,8#; it has been shown
that this approach is only valid when the surface cover
approaches the saturation value@9#. On the other side, for no
too high coverages, an expansion of the adsorption rat
powers of the coverage can be obtained, in which the term
ordern is determined from the solution of the transport pro
lem in the presence ofn adsorbed particles@9#.

However, none of these formalisms allows one to obtai
description of the kinetics at all coverage values, even in
simplest case of adsorption on one-dimensional surfaces
the core of the problem is the fact that one has to take
account the interaction of diffusing particles with a lar
number of adsorbates. On the other hand, we note that
number of situations in physics in which one has to deal w
complicated many-body interactions, self-consistent meth
based on effective interactions have proven to be very use
Thus, one can try to describe the detailed interaction wit
large number of adsorbates by a certain effective interac
to be determineda posteriori in a self-consistent way. The
use of an effective medium approach has proven to be v
useful in a similar context, namely, the diffusion-controlle
ligand binding to a spherical cell partially covered by rece
tors @10#. The kinetic law obtained within this approach h
been shown to be indistinguishable from the results obtai
in Brownian dynamics simulations.

Our aim in this paper is to explore the accuracy of such
approximation in nonsequential adsorption processes
which transport is dominated by diffusion. To this end,
Sec. II we introduce a simplified model in which a suspe
sion of hard disks adsorb irreversibly onto a line. In Sec.
the kinetics of the model is analyzed through a generali
car-parking process explicitly coupled to a detailed desc
tion of the bulk diffusion process. Also, the validity of th
procedure is confirmed by comparison with nonsequen
Brownian dynamics simulations. Finally, in Sec. IV we r
view our main conclusions.

II. DESCRIPTION OF THE MODEL

We want to study a simple model that may allow us
understand the coupled effect of bulk diffusion and surfa
722 ©1999 The American Physical Society
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PRE 60 723IRREVERSIBLE ADSORPTION OF DIFFUSING HARD . . .
saturation on the kinetics of monolayer formation. We co
sider a dilute suspension of disks of radiusR that diffuse in a
fluid in the bidimensional regionz.0 with a constant diffu-
sion coefficientD. We are interested in situations in whic
colloidal adsorption is fully irreversible, so that the intera
tion potential between the colloidal particles and a clean s
face can be replaced by a perfect sink placed very clos
the surface@11#. Thus, we consider that when the center o
particle arrives atz50, it is adsorbed irreversibly. The mac
roscopic state of the adsorbing line is characterized by
coverage,u52Rr, wherer is the number of adsorbed pa
ticles per unit length. As explained in the Introduction, t
repulsive interaction between adsorbed and diffusing p
ticles leads to a decrease of the flux of particles when
coverageu increases~the so-called blocking effect!. In our
model we assume that the adsorbed particles interact as
disks with free particles, so the interaction between free
adsorbed particles takes place in the region 0<z<2R, which
we will call the boundary layer from now on. We assum
that the thicknessl ;2R of this boundary layer is smal
compared to the macroscopic length scaleL, determined by
boundary and initial conditions imposed on the suspens
In addition, we assume that the bulk concentration is dilut
so the interactions between diffusing particles in the bulk
neglected. Out of this boundary layer, the macroscale c
centrationcM(rW,t) obeys the diffusion equation:

]cM~rW,t !

]t
1D¹2cM~rW,t !50, ~1!

and the particles flux towards the adsorbing line entering
boundary layer isJS(x,t)5DdcM /dzuz52R . Equation ~1!
does not include the details occurring at thel scale, which
cannot be distinguished within this spatial resolution. Th
details will be taken into account by matching the macr
cale concentration with an averaged microscale solution
tained from a particle transport problem formulated at thel
scale inside the boundary layer region.

We are interested in the microscale concentrationcI near
the adsorbing line, which takes into account the local in
mogeneities and the interaction withN adsorbed particles
located atx1 ,x2 , . . . ,xN[XW N . Near the adsorbing surface
after a short transient time of ordert;l 2/D, the transport
process is stationary if the colloidal suspension is dilu
enough@9# (cBR2l !1, wherecB is a characteristic concen
tration near the boundary layer!. From now on, we will use
dimensionless units in which lengths are measured in unit
2R, time in units of 4R2/D and u5r5N/A, A being the
length of the adsorbing line. Thus,cI(rW;XW N) is a solution of
the stationary diffusion problem:

¹2cI~rW;XW N!50. ~2!

By definition, cI(rW;XW N) verifies the boundary condition o
zero radial flux at the surfaces of theN adsorbed particles
~hard disk interaction! and a perfect sink at the free gap
between the adsorbed particles. The second boundary co
tion is obtained by realizing that far from the adsorbing s
face the particle flux has to match the macroscopic fl
which is homogeneous at thel scale. Thus, we impose
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uniform incoming flux of particlesJS far from the adsorbing
surface. Due to the linearity of Eq.~2! we can rewrite
cI(rW;XW N)5JSC(rW;XW N), whereC(rW;XW N) is a particular solu-
tion of Eq. ~2! with unit flux far from the adsorbing surfac
and verifying the same boundary conditions ascI(rW;XW N) at
the surface.

Let us define the average concentration^cI&(z;u) as

^cI&~z;u![E pN~XW N!cI~rW;XW N!dXW N , ~3!

wherepN(XW N) is the probability that theN adsorbed particles
are in the configurationXW N . Note that̂ cI& is a function ofz
andu only due to the homogeneity of the average. The
erage ^C&(z;u) is defined analogously and it verifie
^cI&(z;u)5JS^C&(z;u) . Out of the boundary layer (z
>1), ^cI& must match the macroscopic concentrationcM .
From Eqs.~2! and ~3! we have, forz>1:

d2^C&~z;u!

dz2
50, z>1. ~4!

The solution of Eq.~4! that verifies the condition of unit flux
is

^C&~z;u!5z1kr
21~u!, z>1 ~5!

The integration constantkr(u) is a function ofu only which
verifies kr

21(0)50 and kr(u5u`)50. Defining cB(t)
[cM(z51;t) the continuity of the macroscopic concentr
tion at z51 requirescB(t)5JS^C&(z51;u). Defining the
kinetic coefficientK21(u)511kr

21(u) one obtains the fol-

lowing boundary condition forcM(rW;t):

du

dt
[JS~ t !5K~u!cB~ t !. ~6!

Equation~6! is a generalized Langmuir kinetic equation@9#
in which the kinetic coefficientK(u) reflects the effect of
previously adsorbed particles on the diffusion process n
the interface. OnceK(u) is known, the kinetics of the mono
layer formation can be obtained by solving Eq.~1! for the
macroscale concentration with the boundary condition~6! at
the interface and the appropriate additional initial and bou
ary conditions in the bulk. The explicit calculation ofkr(u)
requires a complete solution of the microscale ma
particles problem, which is not feasible. Instead we will d
velop an effective medium approach. This approach is ba
on the observation that, according to Eq.~5!, from the mac-
roscale point of view, the interface acts as a semiperme
medium, which imposes a concentrationkr

21(u) at z50.
This fact is analogous of that encountered in@10# in the study
of adsorption of a spherical cell partially covered by rece
tors. It suggests that the influence of the adsorbates on
fusing particles can be replaced by the interaction with
effective medium. In the following section, we will develo
such an approach.
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III. EFFECTIVE MEDIUM APPROACH

We start by obtaining an approximation toC(rW;XW N) mak-
ing use of the effective medium~EM! approach. In this ap-
proach, we replace the exact boundary conditions of z
radial flux at the surfaces of theN adsorbed particles~adsorb-
ed atXW N) and perfect sink at the available space between
adsorbed particles by a simplified boundary condition.
important topological observation is that the line is divid
into a set of disjoint gaps between theN adsorbed particles
All adsorption events must take place within any of the
gaps. Now, consider an adsorbing gap of sizeh ~see Fig. 1!,
which we will designate by region I. We will designate th
remaining of the linez50 by region II. The concentration a
a point rW of the bulk near region I is strongly influenced b
the interaction of the diffusing particles with the two a
sorbed particles limiting the gap. The influence of the
maining adsorbed particles is taken into account by assum
a uniform effective medium, that imposes a concentrat
kr

21(u) at region II. Within this approximation,CEM is a

function of rW, the size of the gaph and the coverageu
through the effective medium concentrationkr

21(u).

CEM(rW,h;u) is a particular solution of the stationary diffu
sion equation~2! that verifies the boundary conditions o
uniform unit flux far from the adsorbing surface, perfect si
at region I, and zero radial flux at the surfaces of the t
adsorbed particles limiting the gap. At region II, the effecti
medium approach assumes thatCEM(rW,h;u) has the uniform
value kr

21(u). Thus, the concentration atz50 is cI50 at
region I, andcI5JSkr

215(12K)cB[cEM at region II. This
concentrationcEM evolves withu from that of an adsorbing
empty linecEM(u50)50 to the bulk concentration at jam
ming, cEM(u5u`)5cB(u`).

We can take advantage of the linearity of Eq.~2! by de-
composingCEM in the form:

CEM~rW,h;u!5F1~rW,h!1kr
21~u!F2~rW,h!, ~7!

where F1(rW,h) and F2(rW,h) are particular solutions of the
diffusion equation~2!. Both functions verify the boundary
conditions of perfect sink in region I and zero radial flux
the surfaces of the two adsorbed particles limiting the g
F1(rW,h) is the solution corresponding to the situation
which no more particles than these limiting the gap
present on the line. It therefore verifies the boundary con

FIG. 1. Illustration of particle adsorption onto a free gap of s
h limited by two adsorbed particles~shown in black!. A new par-
ticle ~in gray! has been adsorbed, creating two new gaps of sizh
and h82h21. At the same time, another particle~also shown in
gray! diffuses near this gap. Region II, at which the effective m
dium approximation is employed, is denoted by EM.
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tion of unit flux far fromz50 and perfect sink at region II
F2(rW,h) gives the contribution toCEM due to particles ad-
sorbed on the remaining portion of the line and verifies
boundary condition of constant value 1 in region II and ze
flux far from z50. The functionsF1(rW,h) andF2(rW,h) are
obtained in the Appendix and are given by Eqs.~A7! and
~A11!.

OnceCEM(rW,h;u) is obtained, we need to describe th
evolution of the structure of the adsorbed layer. In the E
approach, we are interested only in the distribution of fr
gaps of sizeh at coverageu. The adsorption of particles ont
the adsorbing line continuously destroys existing gaps
creates smaller new gaps. LetG(h,t) be the number density
of gaps with lengthh at timet. The time evolution ofG(h,t)
due to gap creation and destruction is described by the
ance equation:

]G~h,t !

]t
52q0~h;t !G~h,t !12E

h11

`

dh9q~h9,h;t !G~h9,t !,

~8!

which is a generalization of that proposed in@12,13#. The
functionq(h,h8;t) is the rate of destruction of gaps of sizeh
at time t, creating two new gaps of sizeh2h821 andh8
~see Fig. 1!. Destruction of gaps is due to the adsorption
particles, soq(h,h8;t) is given by the rate of particles ad
sorbing at the pointx5h82(h21)/2 atz50, which is

q~h,h8;t !5
]cI

]z U
z50

. ~9!

In the EM approach,cI5JSCEM near the gap, and Eq.~9!
can be written as

q~h,h8;t ![JS~ t !@q(1)~h,h8!1kr
21

„u~ t !…q(2)~h,h8!#,
~10!

where

q( j )~h,h8!5
]F j

]z U
z50

, ~11!

for j 51,2. The explicit expressions obtained for the fun
tions q( j )(h,h8) are given by Eqs.~A8! and ~A12! in the
Appendix. The functionq0(h;t) is the total rate at which
gaps of lengthh are destroyed at timet, and is given by

q0~h;t !5E
0

h21

dh8q~h,h8;t !

[JS~ t !@q0
(1)~h!1kr

21
„u~ t !…q0

(2)~h!#. ~12!

Note that contrary to previous generalized car-parking
proaches@12,13#, q0 depends on time. This dependence
due to the contributions coming from the effective mediu
surrounding the gap, which is in a state characterized
u(t). It is a consequence of the fact that theshielding prop-
erty, which allows one to exactly solve other on
dimensional models, is not satisfied here. The flux of p

-
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PRE 60 725IRREVERSIBLE ADSORPTION OF DIFFUSING HARD . . .
ticles adsorbing at timet, defined in Eq. ~6!, must be
recovered as the average ofq0(h;t) over all gaps, which can
adsorb particles:

JS~ t !5E
1

`

dhG~h,t !q0~h;t !. ~13!

Equation~13! gives a consistency condition for the EM ca
culation. Note thatG(h,t) is a function oft only through its
dependence onu(t). Thus, one can eliminatet in favor of u
noting that the coverageu is a monotonically increasing
function of t. Using Eqs.~10! and ~12! in Eq. ~8! we obtain
for G(h,u) :

]G~h,u!

]u
52q0

(1)~h!G~h,u!2kr
21~u!q0

(2)~h!G~h,u!

12E
h11

`

dh9@q(1)~h9,h!

1kr
21~u!q(2)~h9,h!#G~h9,u!. ~14!

An equation forkr(u) is obtained using Eq.~12! in the con-
sistency relation~13!:

kr~u!5

E
1

`

dhG~h,u!q0
(2)~h!

12E
1

`

dhG~h,u!q0
(1)~h!

. ~15!

Now, the functionsG(h,u) and kr(u) are obtained solving
numerically the coupled equations~14! and~15!. The desired
coefficientKEM

21 (u)511kr
21(u) is shown in Fig. 2. The ef-

fective medium approach does not provide an estimation
the error introduced by the approximations employed, so
only way to check its accuracy is to compare its results w

FIG. 2. Dimensionless adsorption rateK(u) as a function of the
coverage: self-consistent result~solid line!, density expansion~short
dashed line!, and RSA~dotted dashed line!.
of
e

h

known approximate expressions valid at low or near satu
tion coverages and with computer simulations.

In @9# an expansion of the exact kinetic coefficientK(u)
in powers ofu for nonsequential adsorption models was o
tained. In the case of diffusing hard disks, the first two ter
of the expansion were evaluated giving the result@9#:

K~u!512pu13.124u21O~u3!, ~16!

which is accurate up to coverages of orderu;0.25. Equation
~16! is also shown in Fig. 2 for comparison. As shown in th
figure, the EM results agree very well with Eq.~16! in the
range of validity of Eq.~16!.

Near the jamming limit, the arguments proposed
Schaafet al. @14# adapted to diffusing disks lead to th
power-law behaviorK;(u`2u)3/2. The obtained behavio
of KEM(u) near the jamming limit reproduces the know
power lawK;(u`2u)3/2, so the effective medium solution
is consistent both with low- and near-jamming dens
known results. FromKEM(u) we obtain a jamming coverag
of u`.0.751 that agrees with the value previously obtain
by analyzing a sequential model, which includes diffusi
random sequential adsorption~DRSA! @13#. As in the three-
dimensional case, the jamming coverage is close to
known RSA value@9,15#. In spite of this similarity between
diffusing disks and RSA-jamming configurations, the kine
ics of both processes are clearly different, as shown in Fig
This comparison shows that the blocking effect of adsorb
particles is larger in our model than in RSA, especially
low and intermediate coverages.

Now, we propose the following simple fitting formula t
the EM results:

K f it
21~u!511

a1u1a2u21a3u3

~12u/u`!a4
. ~17!

In order to exactly recover the low density expansion E
~16! we fixed the values ofa1 and a2 to a15p and a25
20.4712. Also, we havea453/2 in order to recover the
asymptotic behavior of the EM solution. Thus, the only fr
parameter isa3, which is obtained by a least-squares fittin
obtaininga3520.8509. Using this value,K f it(u) is indis-
tinguishable fromKEM(u) when plotted in Fig. 2.

In order to check the accuracy of the effective mediu
result at all coverages, we compare it with computer simu
tions of nonsequential adsorption of disks. We consider
initial uniform concentrationc0 in a vessel limited by an
adsorbing line of lengthLx at z50 and a reflecting line a
z5Lz . Periodic boundary conditions are applied to the oth
two walls. Initially, N05LxLzc0 particles are placed ran
domly inside the simulation box. The process is simulated
using a Brownian dynamics algorithm@16# in which all par-
ticles diffuse simultaneously in continuous two-dimension
~2D! space. The collision between a diffusing particle and
adsorbed one is modeled as an elastic collision@17# . We are
interested in simulations of diluted suspensions, so the in
actions between two or more particles in the bulk can
neglected. We only consider the hard disk interaction
tween adsorbed particles and diffusing ones.

In these simulations, the simultaneous adsorption of t
free particles at very close positions, competing to occu
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the same free space on the line is highly improbable du
the low bulk concentration. In fact, this event was not o
served in our simulations. Of course, simultaneous ads
tions at different points~at the same or different gaps! or
adsorptions separated by very small time intervals were v
often observed.

The dimensionless values of the parameters employe
our simulation wereLx5100, Lz521, and c050.05; the
time step wasDt51024 and the simulation results were a
eraged over 1000 simulation runs.

The flux Js(u) obtained in these simulations is shown
Fig. 3. On the other hand, we have solved numerically
diffusion equation~1! with the boundary condition atz51
given by Eq.~6! using the effective mediumK(u), a reflect-
ing boundary condition atz5Lz and the initial condition
cM(t50)5c0. Note that in this situationcM is a function of
z and t only. In Fig. 3 we compare the obtained fluxJS(u)
with that measured in our simulations, showing an excell
agreement at all coverages except at very short times, be
the steady situation is reached in the boundary layer. At
point, we remark that although the time evolution ofu de-
pends on the specified boundary conditions, the jamm
coverageu` defined by K(u5u`)50 is independent of
these. Our simulations give the valueu`.0.7506, which is
consistent with the effective medium calculations.

This simultaneous diffusion of particles is the main d
ference between our simulations and the sequential sim
tions of the DRSA@15#. In our algorithm, several particle
can adsorb simultaneously~or in a very small time interval!
at different points of the adsorbing surface. If one obser
the motion of an individual diffusing particle, the mean tim
needed to reach the adsorbing surface by diffusion can
come arbitrarily large~even whether the surface is free
adsorbed particles!. However, due to the simultaneous m
tion of all the particles, the observed time between adso
tions can be arbitrarily small. Due to the competition of t
diffusing particles to arrive at the adsorbing line, the o

FIG. 3. Dimensionless particle fluxJs(u) starting from an initial
particle concentrationc050.05: simulations~crosses! and solution
of the time-dependent diffusion equation with boundary condit
given by Eq.~6! ~solid line!.
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served time between adsorptions is not equal to the m
time, which an individual particle needs to reach the adso
ing line. In contrast, in a DRSA algorithm@18# this compe-
tition is not included and the time between consecutive
sorptions is equal to the time which a particle needs to re
the adsorbing line. This time can become very large and
order to obtain feasible computational times, particles m
be rejected when arriving to a given height. In addition, t
obtained results depend strongly on the position of this
jection line, so the kinetics of the process is not well defin
@18#.

Let us note that in order to analyze the effect of synch
nous diffusion of several particles in adsorption kinetics
different simulation model, based on cellular automat
~CA! was proposed in@19#. CA models are interesting be
cause they allow fast simulations, especially in parallel m
chines. However, the microscopic details of the CA mo
are different from those of our Brownian dynamics simu
tions. Unlike our simulations, in the CA model particles pe
form a random walk on a square lattice. The radius of
particles is fixed to be 1/4 of the mesh size and the proba
ity of jumping to the adjacent site can depend on the dir
tion of the jump. The results obtained in the simulations
observed to depend on the fine microscopic aspects of
jump dynamics. For example, the jamming coverage is fou
to depend on the diffusion coefficientD, whereas in Brown-
ian dynamics the effect ofD is to change the time scale.

IV. CONCLUSIONS

A simplified ~111!-dimensional adsorption model ha
been analyzed in order to investigate the kinetics of non
quential particles adsorption driven by diffusion. We ha
analyzed, both theoretically and by nonsequential Brown
simulations, the irreversible adsorption of diffusing ha
disks onto a line. The most interesting feature of this mo
is that the usual hypothesis of sequential adsorption is
valid and a more detailed description of the transport proc
is required. Thus, this simple model allows us to investig
the coupling between the diffusive transport from the bu
and the blocking effect due to the adsorbed monolayer.

The theoretical analysis was performed by noting that a
adsorption event must take place into a free gap limited
two adsorbed particles. However, the diffusive transport
wards the interface is influenced not only by the partic
limiting the gap, but also by the remaining part of the mon
layer. To deal with this many-body effect, we have intr
duced an effective medium hypothesis: the remaining of
adsorbing line out of a given gap is assumed to be at
uniform concentrationcEM(u) to be determined in a self
consistent way. Once the diffusion equation near an ads
ing gap surrounded by the effective medium is solved,
adsorption rate is obtained by analyzing the dynamics
gaps creation and destruction. This description leads to
integrodifferential equation for the gap density coupled w
a self-consistent condition for the adsorption rate, which
have solved numerically.

The effective medium adsorption rate is in agreem
both with known approximate expressions valid at low- a
near-saturation coverages as well as with nonsequential c
puter simulations. Thus, the effective medium approximat

n
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gives accurate results at all monolayer densities. We
note that our results show an enhanced blocking effec
compared with an RSA process.

The full analysis of a consistent approach to nonsequ
tial adsorption processes, which includes transport mec
nisms and interaction with the interface, is a very comp
cated problem because it requires us to take into acc
simultaneous interactions between a large number of
ticles. The main goal of this paper is to show explicitly, in
simplified case, that the interaction with the adsorbed mo
layer can be modeled as an effective medium, to be spec
self-consistentlya posteriori. Such an approach can also b
useful for the study of more complex models, including oth
transport processes@20,21#.
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APPENDIX: SOLUTIONS OF THE DIFFUSION EQUATION
IN BIPOLAR COORDINATES

In this Appendix, we obtain explicitly the solution
F1(rW,h) and F2(rW,h) of the diffusion equation~2! required
in Sec. III. To this end, we introduce bipolar coordinatesj,
h centered at the center of region I (x50, z50) defined by
@22#:

x1 iz5 i sinha cotFj1 ih

2 G , ~A1!

where the parametera is related to the gap sizeh by
2 cosha5h11. The curvesh5const are semicircles cen
tered at x5 sinha cothh, z50 with radius r
5 sinha/ sinhh. The pointj50,h50 corresponds toz5`.
For h56a we obtain two semicircles, which coincide wit
the circumferences of the exclusion disks of unit radius
limited by the adsorbed particles. In these coordinates,
diffusion equation now reads as

]2F j

]h2
1

]2F j

]j2
50. ~A2!

Both functionsF1(rW,h) andF2(rW,h) verify Eq. ~A2! with the
boundary conditions of perfect sink at region I and zero
dial flux at the excluded surfaces delimited by the two a
sorbed particles. In bipolar coordinates these conditions
given by

F j~rW,h!uj5p50, ~A3!
so
as

n-
a-
-
nt
r-

o-
ed

r

e
-

-
e

-
-
re

]F j

]h U
h56a

50. ~A4!

First, we obtain the functionF1(rW,h). In addition to Eqs.
~A2!, ~A3!, and~A4!, it also verifies the condition of perfec
sink in region II,

F1~rW,h!uj5050, ~A5!

and unit flux towards the adsorbing surface atz→`, F1(z
→`,h).z. It is useful to rewrite this last condition in bipo
lar coordinates in the form@22#

F1~z→`,h!.z52 sinha (
n51

`

e2nuhu sinnj. ~A6!

The solution of Eq.~A2! with the boundary conditions~A3!–
~A6! is separable and can be expanded in terms of the
ementary orthogonal solutions of Eq.~A2!. The elementary
solutions, which verifies Eqs.~A3! and~A5!, are of the form
sinnj coshnh @22#, and applying the boundary condition
~A4! and ~A6! one obtains the coefficients of the series e
pansion. The result is

F1~rW,h!5z12 sinha (
n51

`
e2na

sinhna
sinnj coshnh.

~A7!

Using Eq.~A7! in Eq. ~11! we obtain the contribution ofF1
to the rate of adsorbing particles:

q(1)~h,h8!5122~11 coshh! (
n51

`

~21!n
ne2na

sinhna
coshnh.

~A8!

The functionF2(rW,h) is obtained in a similar way. In addi
tion to Eqs.~A3! and ~A4!, F2(rW,h) verifies the boundary
conditions of constant value 1 at region II:

F2~rW,h!uj5051. ~A9!

It also verifies the condition of no net flux of particles t
wards region II. This condition is obtained by assuming
z→` the same concentration as in region II:

F2~rW,h!uj50,h5051. ~A10!

The solution of Eq.~A2! with boundary conditions~A3!,
~A4!, ~A9!, and ~A10! is a function only ofj and has the
simple form:

F2~rW,h!512
j

p
. ~A11!

Using Eq.~A11! in Eq. ~11! we obtain the contribution ofF2
to the rate of adsorbing particles:

q(2)~h,h8!5
11 coshh

p sinha
. ~A12!



k

P

ce

. E

and

hys.

m.

s

728 PRE 60JORDI FARAUDO AND JAVIER BAFALUY
@1# G. Y. Onoda and E. G. Liniger, Phys. Rev. A33, 715 ~1986!.
@2# Z. Adamczyk, B. Siwek, M. Zembala, and P. Belousche

Adv. Colloid Interface Sci.48, 151 ~1994!.
@3# J.W. Evans, Rev. Mod. Phys.65, 1281~1993!.
@4# P. Wojtaszczyk, E.K. Mann, B. Senger, J-C. Voegel, and

Schaaf, J. Chem. Phys.103, 8285~1995!.
@5# J.J. Ramsden, Phys. Rev. Lett.71, 295 ~1993!.
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